LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 03

B.Sc. DEGREE EXAMINATION – MATHEMATICS

THIRD SEMESTER – NOVEMBER 2013

MT 3503 - VECTOR ANALYSIS AND ORDINARY DIFFERENTIAL EQUATION.

Date: 06/11/2013

Dept. No.:

Max. 100 Marks

Time: 9.00 – 12.00

<u>SECTION – A</u>

(Answer ALL questions)

 $(10 \times 2 = 20)$

- 1. If $\phi(x,y,z) = x^2y + y^2x + z^2$, find $\nabla \phi$ at (1,1,1).
- 2. If $\overline{F} = xy^2 \vec{\iota} + 2x^2 yz \vec{j} 3yz^2 |\vec{k}|$, find div \overline{F} .
- 3. Define line integral of a conservative vector.
- 4. What are spherical coordinates?
- 5. State Gauss divergent theorem.
- 6. State Stroke's theorem.
- 7. Solve $\frac{dy}{dx} = \frac{y+2}{x-1}$.
- 8. Find the general solution of $y = xp + \frac{\alpha}{p}$.
- 9. Solve $(D^2 + 6D + 9)y=0$.
- 10. Find the complimentary function of $x^2 \frac{d^2 y}{dx^2} 2x \frac{dy}{dx} 4y = x^4$.

SECTION -B

(5X8#40)

(Answer any FIVE questions)

- 11. Find the directional derivative of $\phi = 3x^2 + 1y 3z$ at (1,1,1) in the direction of $2\vec{i} + 2\vec{j} 1\vec{k}$.
- 12. If $\vec{F} = 3xy^{1/2}\vec{i} + 2xy^{3}\vec{j} + x^{2}yz^{1/2}\vec{k}$ and $f = 3x^{2} yz^{1/2}\vec{i}$ (i) $\vec{F} \cdot \nabla f$ (ii) (f) at (1,-1,1).
- 13. If $\vec{F} = 2xzi\vec{i} x\vec{j} + y^2 i\vec{k}$, then evaluate $\iint_V \vec{F} \cdot dv$ where V is the region bounded by the surfaces x = 0, y = 0, y = 6, $z = x^2$, z = 4.
- 14. Using Divergence theorem evaluate $\vec{s}_s \vec{F} \cdot \vec{m} \, ds$ where $\vec{F} = 4x \, \vec{\iota} 2y^2 \, \vec{j} + z^2 \, \vec{k}$ and S is the surface bounded by the region $x^2 + y^2 = 4$, $z^2 = 0$ and z = 3.
- 15. Solve $x^2p^2 + 3xyp + 2y^2 = 0$.
- 16. Solve $xp^2 yp x = 0$.
- 17. Solve $(D^2 2D + 2)y = e^x x^2 + 5 + e^{-2x}$.
- 18. Solve($x^2 D^2 3xD 5$)y = Cos (log x)

<u>SECTION – C</u>

(Answer any TWO questions) $(2 \times 20 = 40)$

19. (a) If $\phi = (y^2 - 2xyz^3)\vec{i} + (3+2xy-x^2z^3)\vec{j} + (\vec{e}|z^3 - 3x^2yz^2)\vec{k}$, find ϕ . (b)Prove that $\times (\times \vec{F}) = \nabla (\cdot \vec{F}) - \nabla^2 \vec{F}$.

(c) Find a unit normal vector to the surface $x^2 + xy + z^2 = 4$ at the point (1,-1,2). (7+7+6)

20. Verify Stroke's theorem for the vector field defined by $\vec{F} = (x^2 - y^2)\vec{\iota} + xy\vec{j}$ in the region in XY plane bounded by x=0; x=a; y=0; and y=b.

21 (a) Solve
$$\frac{dy}{dx} = \frac{y^2 - 2xy}{x^2 - 2xy}$$
.
(b) Solve $(1 + x^2)\frac{dy}{dx} + y = 1$.
(c) Solve $yp^2 - xp + 2y = 0$.
22 (a) Solve $\frac{d^2y}{dx^2} + y = \tan x$.
(b) Solve $(x^2D^2 - 3xD)y = x + 1$.
(10+10)

\$\$\$\$\$\$